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Abstract—The use of diffusion tensor imaging (DTI) for
studying the human heart in vivo is very challenging due to
cardiac motion. This paper assesses the effects of cardiac motion
on the human myocardial fiber architecture. To this end, a model
for analyzing the effects of cardiac motion on signal intensity is
presented. A Monte-Carlo simulation based on polarized light
imaging data is then performed to calculate the diffusion signals
obtained by the displacement of water molecules, which generate
diffusion weighted (DW) images. Rician noise and in vivo motion
data obtained from DENSE acquisition are added to the simulated
cardiac DW images to produce motion-induced datasets. An
algorithm based on principal components analysis filtering and
temporal maximum intensity projection (PCATMIP) is used to
compensate for motion-induced signal loss. Diffusion tensor pa-
rameters derived from motion-reduced DW images are compared
to those derived from the original simulated DW images. Finally,
to assess cardiac motion effects on in vivo fiber architecture, in
vivo cardiac DTI data processed by PCATMIP are compared to
those obtained from one trigger delay (TD) or one single phase
acquisition. The results showed that cardiac motion produced
overestimated fractional anisotropy and mean diffusivity as well
as a narrower range of fiber angles. The combined use of shifted
TD acquisitions and postprocessing based on image registration
and PCATMIP effectively improved the quality of in vivo DW
images and subsequently, the measurement accuracy of fiber
architecture properties. This suggests new solutions to the prob-
lems associated with obtaining in vivo human myocardial fiber
architecture properties in clinical conditions.

Index Terms—Diffusion tensor imaging (DTI), fiber architec-
ture, in vivo heart, motion, polarized light imaging.

I. INTRODUCTION

D IFFUSION tensor imaging (DTI) allows for noninvasive
assessment and quantification of water molecule diffu-

sion behavior in tissues in vivo [1]. In simple water molecule
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diffusion models, the directional dependence of diffusion can be
defined by diffusion tensors. Three-dimensional diffusion ten-
sors can be visualized as ellipsoids with major, medium, and
minor axes defined by the diffusion tensor’s three eigenvectors.
The major axis, which corresponds to the largest of the three
eigenvectors, reflects the direction of the maximum diffusion
probability and thus the averaged orientation of the local muscle
fiber tracts passing through the voxel [2]–[4]. Cardiac DTI has
been used to depict the fiber architecture of the human heart
in healthy individuals [5]–[11] and patients [12], [13]. Frac-
tional anisotropy (FA) and mean diffusivity (MD) have been
shown to provide quantitative information regarding the spa-
tial coherence of cellular structures and the average intra-voxel
water molecule mobility, respectively [14]. These parameters
have been used in ex vivo cardiac DTI measurement [15]–[18]
and also in vivo DTI to characterize the fiber integrity of the
myocardium in patients [12], [13]. However, patient status or
heart motion in in vivo DTI greatly influences the image quality
because DTI is motion sensitive [19]–[21]. Moreover, the low
signal-to-noise ratio (SNR) of in vivo images can also cause es-
timation errors in these measures [22].
To date, very few studies have investigated the impact of car-

diac motion on diffusion measurement and fiber architecture
properties in beating human hearts. One of the main difficulties
lies in the fact that cardiac motion induces large signal loss and
has complex effects on diffusion tensors. Compared to compu-
tational imaging methods such as DTI, polarized light imaging
(PLI) appears to be the only technique that allows for physical
measurement of the fiber orientation of the entire human heart in
3-D with high spatial resolution m [31], al-
though other high spatial resolution 3-D DTI studies have also
been reported in the literature, but on the small animal hearts
(with a resolution of m ) [23]. PLI provides
the ground truth of the human cardiac fiber architecture; how-
ever, PLI can only be used in ex vivo hearts. On the other hand,
displacement encoding with stimulated echoes (DENSE) [26]
sequences can provide high spatial resolution 3-D displacement
fields of the human heart in vivo. This has motivated us to in-
vestigate cardiac motion effects on the measurement of in vivo
fiber architecture in a multimodal approach. More precisely, our
method consists of: 1) using physical measurements from PLI
to generate realistic DW images at different gradient diffusion
directions [24], [25], 2) integrating motion information of the
beating human heart obtained from DENSE [26] acquisition, 3)
establishing an empirical model describing the relationship be-
tween cardiac motion and diffusion signal intensity (SI), 4) ap-
plying this model to the simulated DW images to imitate the in
vivo acquisition of DW images, 5) applying the principal com-
ponents analysis filtering technique combined with temporal
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maximum intensity projection (PCATMIP) [27], [28] to the sim-
ulated and in vivo DW images to obtain motion corrected im-
ages, and 6) computing the corresponding diffusion tensor pa-
rameters and fiber architecture properties.

II. MATERIALS AND METHODS

A. Polarized Light Imaging

PLI data were acquired using an ex vivo human heart via the
procedure detailed in [31]. The heart was fixed in formaldehyde
(4% neutral buffer) andwas embedded in amethyl-methacrylate
(MMA) resin. It was then mounted on a microtome (Leica Mi-
crosystems,Wetzlar, Germany) stage and the plane of serial sec-
tioning was determined such that it was parallel to the diaphrag-
matic face of the heart. A series of 500- m sections was cut
using a rotary microtome. Sections were then imaged using the
polarized light optical bench developed in TIMC-IMAG (Uni-
versity of Joseph Fourier Grenoble I, France). Briefly, the sec-
tion was placed on a stage and illuminated with parallel rays of
polarized light. After traversing the section, this light was col-
lected through an orientable full-wave plate and a crossed po-
larizer. The intensity of the resulting interfering light was mea-
sured with a charge-coupled device (CCD) camera. For a single
section, a set of 12 images was collected using various orienta-
tions of the crossed polarizers and full wave plate with a specific
spatial resolution m . From these images, the el-
evation and azimuth angles of cardiac fibers at each voxel were
derived. All tissues were obtained in compliance with French
legal and ethical guidelines.

B. Cardiovascular Magnetic Resonance Imaging

The cardiovascular magnetic resonance (CMR) in vivo ex-
periments were performed with a 1.5T clinical scanner (MAG-
NETOM Avanto, Siemens AG, Healthcare Sector, Erlangen,
Germany) with a maximum gradient strength of 45 mT/m and
maximum slew rate of 200 mT/m/ms. Six healthy volunteers
were recruited for this study, including four males and two fe-
males with a mean age of 30 9 years (from 25 to 50 years)
and a mean heart rate (HR) of 56 10 beats/min (bpm). All sub-
jects gave informed consent to the institutional review board-ap-
proved study protocol prior to participation.
To model the influence of cardiac motion on in vivoDTI, 3-D

displacement fields were obtained from a DENSE acquisition
according to [26]. A total of 20 frames were acquired with a
time resolution of 50 ms covering the entire RR cycle during
breath-holding conditions.
For each subject, both DENSE data and DW images were

acquired in the short-axis view at themid-ventricular level. Prior
to each acquisition, standard two-chamber, four-chamber and
short-axis cines were acquired.
For the DW image acquisitions, two different types of

datasets were collected. The corresponding acquisition schemes
are illustrated in Fig. 1(a) and (b), respectively.
1) DW images were acquired at the same time points of the
cardiac cycle as in the DENSE acquisitions to study the re-
lationship between regional signal loss and cardiac motion.
The trigger delay (TD) was increased 20 times (20 TDs), in
order to produce a series of multi-TD (or multi-phase) DW
images with the same temporal resolution as the DENSE

Fig. 1. Two DW image acquisition schemes. (a) DW images acquisition at the
same time points as in the DENSE acquisitions: the 20 TDs of the DW images
were determined by DENSE acquisitions. (b) DW acquisition devoted to in vivo
DTI: the 10 DW images were acquired with TD increased by 10 ms inside a
diastolic time window. “TD” in the schemes refers to trigger delay.

acquisitions [Fig. 1(a)]. The first TD (TD1) corresponds
to 50 ms after the R-wave trigger. For each TD, three
DW acquisitions with three orthogonal gradient directions
(x, y, z) were obtained to produce DW
images. In total, 80 DW images, including 20 images
(corresponding to null diffusion gradient), were acquired
under breath-holding conditions to explore the entire car-
diac cycle.

2) Whole heart DTI images were then acquired with minimal
signal loss, i.e., at the end of diastole [Fig. 1(b)]. These
datasets are devoted to investigating in vivo cardiac DTI.
The acquisitions occurred inside an optimal time-window
that corresponded to the smallest amount of cardiac mo-
tion toward the end of diastole. To achieve this in the ac-
quired short-axis and long-axis cine sequences, we sought
the time-window of smallest motion at the end of diastole.
For the first time point or TD (e.g., 850 ms), we acquired
one image and 12 DW images corresponding to the 12
diffusion gradient directions in the optimal time-window.
By shifting the TD (by 10 ms), we acquired another
image and 12 DW images at the next time point, which
corresponded to the same 12 gradient directions. By re-
peating the TD shifting 10 times, we acquired a total of

multi-phase images for each slice. The
total scan time was approximately 2 min for each slice
under free-breathing conditions. Compared to acquisition
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TABLE I
SEQUENCE PARAMETERS USED IN THE PRESENT STUDY

scheme 1 [Fig. 1(a)], acquisition scheme 2 had higher tem-
poral resolution (10 ms instead of 50 ms), and its TDs oc-
curred in the optimal time-window situated toward the end
of diastole rather than covering the entire cardiac cycle.

All diffusion images were acquired using a single-shot twice-
refocused spin-echo EPI sequence with optimized bipolar dif-
fusion encoding gradients [32], [33], improved fat suppression
using a gradient reversal technique [34], and standard global
phase correction. The localized first- and second-order shim-
ming was performed with an adjustment box fitting the entire
heart. The sequence parameters used for the study are listed in
Table I.

C. Simulation of Cardiac Motion in DTI Using DENSE
Sequences: Toward a Motion Model

The signal decay as a function of the B-value is defined in the
case of static organs by

(1)

where represents the signal intensity, denotes the -value
which determines the amount of diffusion-weighting, repre-
sents the signal intensity for , and represents the dif-
fusion coefficient related to molecular mobility. However, this
model does not take into account the signal attenuation caused
by cardiac motion. In the presence of motion, the diffusion gra-
dients not only encode molecular motion (diffusion) but also
generate an additional signal attenuation term. This term reflects
the fact that the diffusion gradients encode the displacement of
the moving object and generate a phase term according to the
principle of DENSE using so-called motion encoding gradients

(2)

where represents the phase shift resulting from the displace-
ment of proton spins, is the proton gyromagnetic ratio, is

the gradient pulse in a given diffusion gradient direction, and
is the displacement component of the spins in the diffusion gra-
dient direction. Unlike the diffusion attenuation term ,
the attenuation, , owing to tissue motion is spatially vari-
able, unpredictable and several orders of magnitude larger than
diffusion.
CMR techniques sensitive to phase variations [35] are usually

affected by longitudinal cardiac motion (through-plane motion),
which leads to additional signal loss [8]. To establish the motion
model, the amplitude of the relative longitudinal displacement
between two consecutive time points and the DW SI were de-
rived from all pixels averaging in each region of interest (ROI).
The LV was divided into six myocardial ROIs corresponding to
American Heart Association (AHA) segments [36], and the nor-
malized myocardium SI was plotted as a function of the mean
motion of each ROI. In vivo DW SI attenuation in the presence
of heart motion results from a complex process. It is not straight-
forward to integrate such motion in the Bloch–Torrey equations
describing the precession of spins in an external magnetic field
, as well as the concurrent relaxation and diffusion effects in

field . As a first approach, we simplified the process by con-
sidering that the relationship between DW SI and cardiac mo-
tion can be modeled as an attenuation of magnetization.We then
modeled the relationship between the relative longitudinal dis-
placement amplitude (as a surrogate for cardiac motion) and SI
as an exponential function regression defined by

(3)

where represents the normalized SI of 20 time-course signal
points inside a given sector and during one cardiac cycle, rep-
resents the mean motion of each sector, and represent the
regression coefficients, and represents the remaining differ-
ence between the data and the model. A moving average (MA)
filter was applied to the DW SI data to identify the underlying
trends hidden in the measured data. TheMA filter smoothes data
by replacing each data point with the data averaged in a neigh-
borhood, according to the equation

where is the smoothed
value for the th data point, is the number of neighboring data
points on both sides of the current data point, and de-
fines the size of neighborhood. In the present study, we chose

. The estimation of the regression error was evaluated by
the absolute measure of fit, the root mean square error ,
and a relative measure of fit, the coefficient of determination

. They are defined by

(4)

where is the acquired data value, is the predicted value
from the fit and is the weighting applied to each data point,
and

(5)

where is the mean of acquired data.
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Fig. 2. Flowchart of simulated DW data generation and postprocessing. Blocks with gray background represent simulated data and blocks with white background
represent experimental data. “TD” represents trigger delay.

In the above definitions, usually . An value
close to 0 indicates that the model has a smaller random error
and that the fit will be more useful for prediction. An
value close to 1 indicates that a greater proportion of variance
is accounted for by the model.

D. Simulation of Realistic Cardiac DTI Using PLI

Fig. 2 presents a flowchart describing simulated DW data
generation, postprocessing and analysis. First, the diffusion be-
havior of water molecules in the cardiac fiber structure was sim-
ulated based on a series of cardiac PLI data using the Monte
Carlo method [24], [25]. In the simulation, six diffusion gra-
dient directions ([1 0 0; 0 1 0; 0 0 1; 0.707 0.707 0; 0 0.707 0.707;
0.707 0 0.707]) were applied and the diffusion coefficient for the
water molecules in the cardiac tissue was set to mm
in all the directions. Six DW images were then generated, from
which the reference tensor field as well as FA, MD, and fiber
angles were calculated. Second, Rician noise was added to the
simulated DW images to imitate real noise situations before mo-
tion was incorporated [37]. The added Rician noise had a stan-
dard deviation of with respect to the SI of 102, which
corresponded to a SNR of 6 (which is the same as that used in
previously published work) [27]. In parallel, the average motion
was calculated from the 20 displacement fields obtained using
a DENSE sequence for all six healthy volunteers. The raw data
obtained by the DENSE acquisition were processed using IDL
(Research systems, Inc., Boulder, CO, USA); phase map differ-
ences were constructed using the reference scan and the encoded
images [26]. Following manual myocardial border segmenta-
tion, the maps were phase-unwrapped and scaled to the posi-
tion-encoding gradient strength, yielding separate displacement
maps for the x, y, and z directions. The corresponding signal
loss was calculated using the motion model described above
[(3)] and was added to the noise-simulated DW images to yield
multi-directional DW images mimicking noisy in vivo cardiac
DW images contaminated with realistic intrascan cardiac mo-
tion. Because the DENSE encoded data had a temporal resolu-
tion of 50 ms, we used linear interpolation to interpolate the car-

diac diastolic motion to achieve a temporal resolution of 10 ms.
Ten DW images at 10 TDs in diastole with intensity fluctuations
induced by cardiac motion were generated for each diffusion
gradient direction, which resulted in a total of 60 multi-direc-
tional and multi-TD DW images and six reference images with
a null diffusion gradient.

E. Post-Processing and Analysis

After the acquisitions using scheme 2 were obtained
[Fig. 1(b)], a set of DTI images was formed using images
and DW images corresponding to the combination of the 12
gradient directions and 10 equi-spaced time points (10 ms shift
acquisition over the end of diastole). Because these DTI images
were acquired under free-breathing conditions, we registered
them in order to compensate for motion and correctly calculate
the subsequent diffusion tensor parameters. To this end, a non-
rigid registration algorithm [29], [30] was applied, not only to
the different TD DW images corresponding to a given diffusion
direction but also to the DW images at all of the diffusion
directions. For a given gradient direction, we then obtained
a temporal sequence of registered images corresponding to
different shifted TDs or time points. Our goal was to then find,
for each given pixel, an optimal time point at which motion
is minimal. To this end, we applied the PCATMIP technique
[27], [28], [33] to the temporal sequence of DW images. The
principle of this postprocessing is briefly described as follows.
In the registered DW image sequence, if residual motion and
random noise exist, the time-course SI values at a given pixel
will fluctuate. To reduce residual motion and random noise, we
first performed a block-wise spatiotemporal filtering based on
the principal components analysis (PCA) of the DW images;
PCA is applied to a 15 15 pixels boxcar sliding over each
DW image. Then, at a given pixel, we searched for the time
point yielding the highest SI value and assigned this value to
the pixel being considered. Repeating this procedure for each
pixel generated a final DW image that is a summarized version
of the image sequence in which signal loss due to motion is
minimal. Calculating the final image for each gradient direction
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Fig. 3. Variations of voxel motion amplitude and signal intensity as a function
of time points for one pixel in the lateral wall. Signal loss is relatively low at
a few phases of the cardiac cycle and reaches a minimum inside the optimal
time-window, which occurred at the time point 900 ms for this case.

generated 12 DW images, which allowed us to obtain a whole
heart DTI dataset with the derived diffusion tensor parameters
(FA, MD, elevation angle, azimuth angle, and 3-D tracts).
To illustrate how an optimal time point inside the optimal

window can be found in a (registered) DW image sequence ob-
tained using multiple shifted TD acquisitions, Fig. 3 presents
two curves showing the variation of motion amplitude (mea-
sured from DENSE sequence) at a pixel in the lateral wall and
the variation of this voxel SI as a function of time points for one
volunteer, respectively. These curves clearly show that the op-
timal time point for this case occurred at 900 ms; at this time
point, motion is at a minimum and SI is at a maximum, which
implies that motion-reduced DW SI can be accessed using mul-
tiple shifted TD acquisitions. More details about the ability of
the PCATMIP to find an optimal time point and reduce motion
impact can be found in [28].
Simulated DTI data: Image postprocessing was performed

usingMATLAB (R2010b,Mathworks, Inc., Natick,MA, USA).
The PCATMIP technique [28] was applied to the temporal se-
quence of DW images corresponding to the same diffusion gra-
dient direction but different TDs. The SI was measured in the
LV after manual segmentation of the myocardium in . The
SI values of the entire myocardium resulting from PCATMIP
processing were used to estimate the motion information ac-
cording to the proposed cardiac motion model. We compared
the motion information obtained from the PCATMIP-processed
DW images with those originally included in the PLI simulated
DW data.
For quantitative analysis, the trace diffusion-weighted image

(T-DWI) was defined as the geometrical mean of the DW image
intensity over all the directions

(6)

The SNR of the T-DWI images was then defined to assess the
quality of the acquired DW images

(7)

Fig. 4. Definition of the elevation and azimuth angles of a fiber.

where denotes the pixel intensity mean over the LV wall
and “Noise” was measured as the standard deviation (SD) of
pixel intensities over the LV wall.
However, SNR alone is not sufficient to completely assess the

quality of the acquired DTI data. Indeed, DTI data are funda-
mentally different from commonly used scalar data (gray-level
images) or vector-valued data; it is essentially diffusion tensor
data, which implies that DTI data should be evaluated not only
at the level of the DW image (although their quality is primarily
the most important) but also at the level of diffusion tensor-de-
rived parameters such as FA, MD, and fiber angles. These pa-
rameters constitute the main practical indexes to evaluate my-
ocardial integrity. FA and MD are defined in terms of the eigen-
values , , and of the diffusion tensor. FA represents the
degree of deviation of a diffusion ellipsoid from a sphere and
was quantified as the SD of the eigenvalues of the diffusion
tensor normalized by the “magnitude” of the three eigenvalues
of the diffusion tensor. FA varies between 0 (perfectly isotropic
diffusion) and 1 (the hypothetical case of an infinite cylinder)

(8)

where was quantified as the mean of the three eigenvalues
of the diffusion tensor

(9)

To compare the data with the ground truth of the fiber archi-
tecture provided by PLI [31], we calculated two indexes: ele-
vation angle and azimuth angle (presented in Fig. 4). The ele-
vation angle corresponds to the angle between the fiber and the
short-axis plane, while the azimuth angle represents the angle
between the projection of the fiber in the short-axis plane and
the axis.
In vivo DTI data: The DW images acquired under

free-breathing conditions were first registered [30] and then
processed using the PCATMIP method as described previously
in detail. These DW images were then used to calculate the
tensor fields. To improve spatial resolution, the diffusion ten-
sors were interpolated in the plane by a factor of 2 using the
Log-Euclidean method, which avoids swelling effects [38].
Subsequently, FA, MD, elevation angle, and azimuth angle

maps were calculated from the tensor fields, and they were
compared to the results obtained from one single trigger delay
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Fig. 5. Normalized myocardial DW SI as a function of cardiac motion for the
six volunteers corresponding to (a)–(f) and the cardiac motion model over the
six volunteers (g). Blue points in (g) represent experimental data: for each blue
point, the x value indicates the relative longitudinal displacement amplitude and
the y value indicates the measured SI derived from all pixels averaged inside
each of the six AHA ROIs. Red curve in (g) represents the fitted data.

(1TD). Elevation angle was calculated in the regions of the
LV wall at five transmural locations (endocardium, mid-endo-
cardium, mid-wall, mid-epicardium, and epicardium layers).
The partition of the myocardium into these transmural layers
was achieved by first manually segmenting the LV, calculating
a distance from the endocardium to the epicardium, and finally
dividing the distance into five segments equally. The pixels
belonging to the same layer were automatically grouped into
the same class on which the elevation angle was calculated.
Finally, the 3-D fiber architecture of the human heart from
multi-slice data was obtained using the conventional streamline
algorithm [39].

III. RESULTS

A. Simulation Results

Fig. 5 plots the relationship between cardiac motion and
signal loss (normalized myocardial DW SI) for each of the six
datasets corresponding to the six volunteers [Fig. 5(a)–(f)], and
the cardiac motion model (Fig. 5(g), red curve), which was ob-
tained by fitting SI values (blue points) as a function of cardiac
motion. The experimental data were acquired and analyzed
based on AHA ROI segmentation. Globally, more motion in-
creases SI attenuation. Fig. 5(a)–(f) shows that the six datasets
exhibit rather similar behavior. However, the experimental
data do not exhibit a simple monotonous relationship between
the SI values and the cardiac motion, as illustrated by the
discrepancy between the blue points and red curve in Fig. 5(g).
The fitting parameters of this model are and

, which were obtained from the regression
estimation. This model provided a mean value to add signal

Fig. 6. Impact of cardiac motion on T-DWI (left column) and fiber architecture
properties (middle and right columns) using simulated data. (a)–(c) With refer-
ence noise-free data. (d)–(f) With reference + noise data. (g)–(i) With reference
+ motion data. (j)–(l) With reference + noise + motion data. (m)–(o) PCATMIP
results.

TABLE II
QUANTITATIVE ANALYSIS OF THE IMPACTS OF CARDIAC MOTION ON
NORMALIZED SI, SNR, AND FIBER ARCHITECTURE PROPERTIES USING
SIMULATED DATA. MD VALUES ARE IN UNITS OF mm

loss in simulated DW images to imitate the in vivo DW image
acquisition of the beating human heart.
The impact of cardiac motion on T-DWI simulated by volun-

teer’s physiological motion and on fiber architecture properties
is shown in Fig. 6. Signal dropout due to motion is visible in
the LV. Table II provides quantitative analysis of the impact of
cardiac motion on normalized SI, SNR, and fiber architecture
properties corresponding to Fig. 6. The DW images corrected
by the PCATMIP method offered an overall increased SI (this is
consistent with the hypothesis that PCATMIP removes inherent
signal loss due to motion) and therefore resulted in a subsequent
higher SNR (5.3) compared to the Ref + noise (4.9) and the Ref
+ noise + motion (3.7). This illustrates that the PCATMIP can
effectively recover signal loss due to cardiac motion. The signal
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Fig. 7. Elevation angle maps (left column) and azimuth angle maps (right
column). (a) and (b) Original angle maps from simulated DW data. (c) and
(d) Angle maps after adding noise. (e) and (f) Angle maps after adding cardiac
motion. (g) and (h) Angle maps after adding noise and cardiac motion. (i) and
(j) Corrected angle maps after using PCATMIP processing.

loss due to noise resulted in increases in FA (0.82 0.07) and
MD mm compared to those obtained
from the original DW images (0.56 and mm
for FA and MD, respectively). With the added motion, signal
loss is more pronounced. After processing by the PCATMIP,
we observed lower FA values with respect to the Ref + noise
( 28%), but higher FA values with respect to the Ref ( 5%).
We also observed smaller MD values with respect to the Ref
+ noise + motion ( 54%); however, the MD values are higher
than those in the Ref+ noise and the Ref ( 19% and 44%,
respectively). The results showed that both FA and MD were
overestimated with increased motion and that motion-induced
signal loss could be minimized after using PCATMIP.
Fig. 7 shows the elevation and azimuth angle maps calculated

from the primary eigenvectors of the diffusion tensor fields.
Fig. 7(a) and (b) represents the original maps without adding
noise and motion. In Fig. 7(a), the elevation angle varies from

on the endocardium to on the mid-wall,
and back to on the epicardium of the LV, which re-
flects fiber rotation. In Fig. 7(b), we can observe continuous cir-
cular variation of the azimuth angles inside the LV wall. The az-

Fig. 8. (a) Free-breathing short-axis DW images from 10 repetitions acquired
at different time points for one direction during diastole on a volunteer. Visible
spatial SI fluctuation resulting from spatially variable intrascan motion is vis-
ible. (b) Processed DW images for one direction using the PCATMIP method.
(c) DW images corresponding to 12 diffusion gradient directions as well as
images were reconstituted using the PCATMIP method.

imuth angle varies with the curvature of the LV and rotates with
a smooth progression from one color to the other while turning
around the LV. For example, there are red fibers at the junction
between the LV and right ventricle of the heart with a 0 azimuth
angle, and blue fibers in the inter-ventricular septum and lateral
wall of the ventricles with a 90 azimuth angle. Variation in the
azimuth angle reflects the spiral-shaped muscle structure of the
heart. The regular variation pattern of elevation and azimuth an-
gles is removed after adding the Rician noise and cardiac motion
in Fig. 7(g) and (h). Signal loss due to motion and noise there-
fore greatly influence the angle maps. After using the PCATMIP
method, regular azimuth angle [Fig. 7(j)] variation patterns were
nearly completely recovered despite a relatively higher noise
level. However, the elevation angle [Fig. 7(i)] range was nar-
rower ( on the endocardium, on the mid-
wall, and on the epicardium) than in the reference
[Fig. 7(a)].

B. In vivo DTI Results

Fig. 8 shows an example of in vivo cardiac DW images of a
volunteer. Fig. 8(a) presents DW images of 10 TD acquisitions
of one diffusion gradient direction. The signal loss throughout
the myocardium is visible because the cardiac motion was spa-
tially and temporally heterogeneously distributed due to free-
breathing during acquisition. Fig. 8(b) shows the processed DW
image after applying the PCATMIP method to the 10 TD DW
images. Fig. 8(c) shows the DW images recovered from the
raw images using the PCATMIP method in 12 directions, which
presents highly reduced motion artifacts and reduced intrascan
signal loss.
The FA, MD, elevation angle, and azimuth angle maps are

illustrated in Fig. 9. The maps revealed that the mean FA value
for 1TD (without PCATMIP) (0.60) is higher than that obtained
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Fig. 9. FA, MD, elevation, and azimuth maps calculated from tensor fields for a short-axis slice in a healthy volunteer.

TABLE III
MEAN SD FA AND MD VALUES IN THE LV OF ALL VOLUNTEERS.
RESULTS DEMONSTRATED THAT THE PCATMIP CORRECTION
YIELDED SYSEMATICALLY LOWER VALUES AND MUCH LOWER

VARIATION THAN 1TD ACQUISITIONS

using PCATMIP (0.42). The MD maps revealed significant dif-
ferences between before and after processing with PCATMIP.
PCATMIP yielded significantly lower MD than with 1TD
( 73%). It also yielded smaller SD mm than
without PCATMIP mm . There were also
significant differences between 1TD and PCATMIP in the angle
maps. With 1TD, heterogeneous elevation and azimuth maps
were yielded due to signal loss throughout the myocardium,
while PCATMIP generated smooth angle maps. For PCATMIP,
the elevation angle varied globally from on the
epicardium to on the mid-wall and to on
the endocardium, which reflects the fiber rotation of the LV.
Table III summarizes the results obtained after applying

PCATMIP to the in vivo cardiac DTI datasets of all of the
volunteers. For each volunteer, with or without PCATMIP, the
FA and MD variation share the same trend: PCATMIP yielded
lower FA and MD values than 1TD. The mean FA value over
all of the volunteers that was obtained using PCATMIP (0.43
0.05) was smaller than that obtained using 1TD (0.56 0.05).
At the same time, the mean MD value over all of the volunteers
with PCATMIP mm was smaller than
that obtained using 1TD mm .
Fig. 10 shows the mean SD of the elevation angle values

over all volunteers in the five cardiac layers with and without
(1TD) PCATMIP. The elevation angle values for all of the vol-
unteers vary from in the endocardium layer, through

Fig. 10. Elevation angle values obtained without (1TD, dotted line) and with
the PCATMIP (solid line) method from the endocardium to epicardium of the
LV. The x value (from 1 to 5) in the plot represents five different transmural lo-
cations (endocardium, mid-endocardium, mid-wall, mid-epicardium, and epi-
cardium layers, respectively). Error bars represent the standard deviations in
each dataset.

in the mid-endocardium layer and in the
mid-wall, and in the mid-epicardium layer to
in the epicardium layer.
Fig. 11 shows the in vivo 3-D fiber tracts of a volunteer de-

rived from 1TD and (the combined use of multiple shifted TDs
and) PCATMIP. The helical structure of the LV is clearly vi-
sualized with the PCATMIP method. The negative to positive
angles of the fibers when moving from the epicardium to endo-
cardium are easily seen, as found in other previous healthy in
vivo [11] and ex vivo [43] human heart studies. This highlights
the potential of the PCATMIP method to minimize cardiac mo-
tion effects on in vivo cardiac DTI.

IV. DISCUSSION

As mentioned before, cardiac motion is three-dimensional,
both in the longitudinal direction (through-plane motion) and
within the imaging plane (in-plane motion). Our experiments
confirmed much greater amplitudes of the longitudinal motion.
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Fig. 11. In vivo 3-D fiber tracts of a volunteer derived from 1TD [(a) and (b)]
and PCATMIP [(c) and (d)]. The 3-D fiber architectures were constructed from
10 slice DW images. The red, green, and blue colors of the tracked fibers indicate
the x, y, z components of the local orientation of the fiber, respectively.

The relative in-plane displacement amplitude ranged from 0.01
to 3.5 mm and the relative longitudinal displacement ranged
from 0.01 to 10 mm at the pixel level of the DENSE data. As a
consequence, we only considered cardiac longitudinal motion in
the analysis of the impact of cardiac motion on diffusion signal
loss in the present cardiac in vivo DTI study. This is in line
with the work of Fischer et al. [35], which also stressed the
importance of longitudinal motion; this has been considered the
most challenging issue in phase sensitive MR imaging.
From the results shown in Fig. 5, the relationship between

cardiac motion and DW SI is not strictly mono-exponential,
which implies other possible approximations to motion mod-
eling problems. Our model was obtained for a single-shot twice-
refocused spin-echo EPI sequence with optimized bipolar diffu-
sion encoding gradients; other diffusion encoding schemes will
most likely lead to other signal loss dependency.
Using a PLI simulated DWdataset as reference for the ground

truth and combining it with our diffusion model, we can pro-
vide simulations that illustrate the efficacy of the PCATMIP
method to recover signal loss due to cardiac motion. We ana-
lyzed the displacement in only six sectors following AHA stan-
dardized segmentation rather than the myocardial motion at the
pixel level. The difference in resolution between the PLI

m and the DENSE mm data
did not allow us to obtain motion information for each pixel in
the PLI data. Moreover, we did not compare the motion at dif-
ferent transmural zones from the endocardium to epicardium.
With transmural segmentation, we may try to search for other
models given experimental cardiac motion data and also find
better fitting techniques for a given motion model. Additionally,
we did not consider the effects of diffusion gradient direction
sampling schemes. Because the same gradient directions were
used in the simulation, this issue does not impact the compar-
ison of motion effects.

Noise simulation revealed that the FA value is 0.82 0.07
in the presence of noise, compared to the original value (0.56).
The effects of noise on the FA estimation have been reported
in the literature, which shows that, in anisotropic systems, the
largest eigenvalue is overestimated and the lowest eigenvalue
is underestimated in general [40]. The mean FA of the Ref +
noise + motion was 0.62 without PCATMIP, compared to the
original value of 0.56. The mean MD of the Ref + noise + mo-
tion was mm compared to the original value of

mm . Our results therefore showed that while
cardiac motion was associated with an overestimation of both
FA and MD, the effect was greater for MD. For the in vivo ex-
periments, themean FA value for 1TD (without PCATMIP) over
the six volunteers (0.56) was higher than when using PCATMIP
(0.43); this was due to the higher noise level andmotion-induced
signal loss. The MD values showed differences between before
and after measures using PCATMIP. With 1TD, signal loss re-
sulted in an overestimation of MD mm .
PCATMIP yielded a significantly lower MD

mm than that obtained using 1TD. The in vivo results
showed that motion-induced signal loss could be minimized by
using the PCATMIP method, which is consistent with the sim-
ulation results. This is in line with previous reports of human
brain studies that also demonstrated that noise and motion cause
a bias for FA and MD and that motion correction strategies help
to improve the accuracy of DTI indexes [41], [42].
The shifted acquisition scheme combined with the PCATMIP

postprocessing allowed us to select, after motion correction and
for each pixel, the optimal time point during the cardiac cycle
with minimal signal loss due to cardiac motion. The PCATMIP
postprocessing over multi-TD SIs clearly maximized the diffu-
sion information in the images while reducing the influence of
motion. Note that in some patients with spatial heterogeneity
of motion (dyskinesia, akinesia), it might be difficult to find a
unique TD that could cancel the effects of motion in the en-
tire myocardium. It is therefore retrospectively not always pos-
sible to determine a best TD at which the DTI data would be
acquired with minimal motion impact. Nevertheless, the chosen
reference TD for 1TD was the one that exhibited the highest ho-
mogeneity and SI in the myocardium.
The first important result was that PCATMIP operation over

multi-TD DW images clearly and always improved image
quality (increased SNR resulting from compensated signal loss
compared to that obtained with 1TD) while preserving the fiber
architecture of the human heart.
The range of elevation angles used in the simulation was re-

stricted to 90 in order to compare to the data reported in the
prior PLI study [31]. After processing by PCATMIP, the range
of elevation angles [Fig. 7(i)] in the simulation study was nar-
rower ( on the endocardium and on the
epicardium) than the reference (Fig. 7(a), on the en-
docardium and on the epicardium). This implies that
PCATMIP could not completely eliminate the impact of mo-
tion and noise on the fiber architecture, but it could still re-
duce the effect of physiological motion. Motion resulted in a
reduced range of fiber angles. The elevation angle range ob-
tained in the in vivo DTI study was narrower (approximately
from 41 on the endocardium to on the epicardium) than
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in previously reported ex vivo human cardiac studies [43], [44].
We must account for many factors that may influence the ele-
vation angle range, i.e., in vivo or ex vivo data, data acquired
at different cardiac phases, spatial resolution, motion artifacts
and segmentation method. The study reported by Lombaert et
al. [43] on healthy ex vivo human hearts showed that the helix
angle varied from on the endocardium to
on the epicardium. The histological study of postmortem human
hearts by Greenbaum et al. showed a distribution of helix an-
gles from approximately 40 on the endocardium to approxi-
mately on the epicardium [44]. The narrower elevation
angle range may be caused by signal loss in the DW images due
to residual noise or residual motion. Another possible cause of
narrower angle ranges may be related to the fact that the an-
gles were obtained by averaging the coarser in-plane resolution
voxels inside the transmural layers. Because coarser resolution
neighboring voxels have greater angle difference, the obtained
angle has, after averaging, a smaller value in total.

V. CONCLUSION

We have proposed amultimodal approach to assess the effects
of cardiac motion on in vivo diffusion tensor parameters of the
human heart. With the aid of the ground truth provided by the
combined use of PLI data, simulated DW images and motion in-
formation derived from DENSE imaging, the proposed cardiac
motion model has been shown to elegantly allow us to inves-
tigate the relationship between cardiac motion and in vivo dif-
fusion tensor parameters of the human heart. Additionally, this
method enabled us to quantify the impact of motion on diffu-
sion tensor parameters. Cardiac motion resulted in large signal
loss in DW images, an overestimation of both FA and MD, and
a reduced range of fiber angles between the endocardium and
epicardium. We also showed that 3-D fiber architecture can be
retrieved from in vivo DTI data acquired under free-breathing
conditions using the shifted TD acquisition scheme combined
with adequate postprocessing based on image registration and
PCATMIP. The FA was 0.43 0.05 and MD was

mm among all volunteers. From the angle maps, the
myocardial fiber orientation of the LV wall showed a circu-
larly symmetric pattern, ranging from 41 on the endocardium
to on the epicardium. The 3-D fiber architecture also re-
produced the typical helical organization of myocardial fibers.
The results showed that the combined use of shifted TD acqui-
sitions and adequate postprocessing based on registration and
PCATMIP effectively improves the quality of in vivo DW im-
ages as well as the subsequent measurement accuracy of fiber
architecture properties. This suggests new directions toward ob-
taining in vivo human myocardial fiber architecture in clinical
conditions.
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